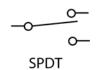
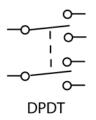

Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1

• Administration:

- o Prayer
- Welcome back
- o Review Quiz 1
- Review:
 - o Reading meters:
 - When a current or voltage value is unknown, <u>begin with the</u> <u>highest</u> meter range.
 - An ammeter <u>must always</u> be connected <u>in series</u> (in line) with a circuit component.
 - Voltmeters <u>are always</u> connected <u>in parallel</u> with the component (across the component).
 - When measuring resistance, disconnect the resistor from the circuit. Also make sure power is off to the circuit.
 - o Ohm's Law:

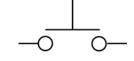

V = I x R where:

- V = voltage in volts,
- I = current in amperes, and
- R = resistance in ohms
- o Switches:
 - SPST switch example and symbol:



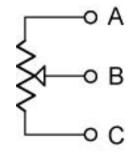
SPST

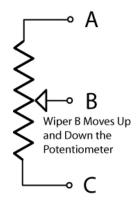
• SPDT switch example and symbol:



• DPDT switch example and symbol:

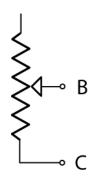
Momentary switches:



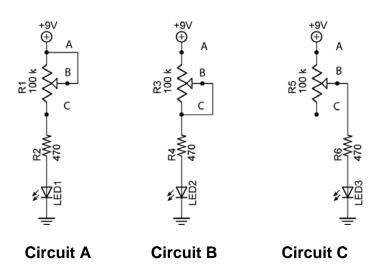

Normally Closed (NC)

Normally Open (NO)

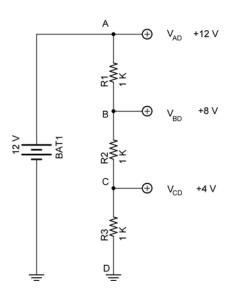
- Show samples
- Potentiometer: a 3 -Terminal Variable Resistor
 - 100 Watt sample
 - Potentiometer Symbol:



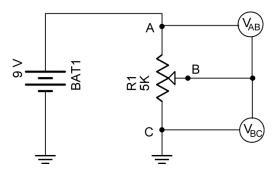
• Function:


Potentiometer

- The resistance between points A and C (R_{AC}) is constant. It is the resistance rating of the potentiometer.
- As wiper B moves up and down the potentiometer, resistances R_{AB} and R_{BC} vary, but $R_{AB} + R_{BC}$ will equal R_{AC} .
- Set up an experiment to verify the last point.
- o Rheostat: A 2 -Terminal Variable Resistor
 - Symbol:

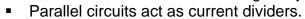

Rheostat

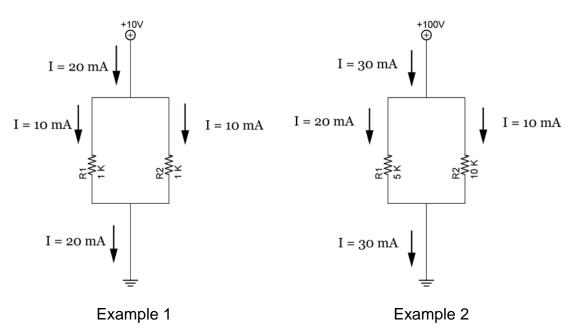
Potentiometer Wired as a Rheostat:


- In the Circuits A and B above, a potentiometer is used as a rheostat.
- In Circuit A above, R_{AB} is always 0 Ohms and R_{BC} varies from 0 100K Ohms.
- In Circuit B, R_{BC} is always 0 Ohms and R_{AB} varies from 0 100K Ohms.
- In Circuit C, R_{AB} varies from 0 100K Ohms and R_{BC} does not exist since there is no connection to C.
- What is the purpose of the 470 ohm resistor?
- Review Summary Sheet of Series and Parallel Circuits
 - See:
 - http://www.cornerstonerobotics.org/curriculum/lessons_year 1/ER%20Week13a,%20Series%20Parallel%20Summary.pdf
- o Parallel Resistors:
 - Perform Review 1 Lab 1 Voltage Drop in a Parallel Circuit

- Voltage Dividers:
 - Series resistors can be used to divide a voltage into smaller voltages. For example, the following series resistors divide a 12 volt source into 12 volts, 8 volts, and 4 volts using the same value for each resistor. Notice that we are not measuring voltages across each resistor, but voltages from a point, e.g. B to the ground point D (V_{BD}). (The voltage drop across each individual resistor is 4 volts.)

Example of a Voltage Divider


 Potentiometers can be used as voltage dividers. In the circuit below, the sum of the voltmeter measurements V_{AB} and V_{BC} equals the source voltage V_{AC}.



Potentiometer as a Voltage Divider

- Voltage dividers may be used in resistive sensor circuits
- Perform Review 1 Lab 2 Potentiometers.

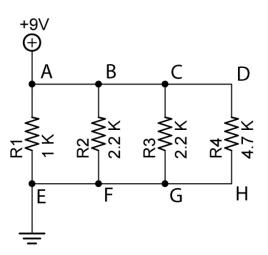
• Kirchhoff's Current Law: The sum of the currents into a junction is equal to the sum of the currents leaving that junction.

- 14" Band Saw:
 - Safety Rules:
 - See copy from the manual.
 - Operation:
 - See copy from the manual.

• Project for the Year:

- Each student will design and build his own mobile autonomous robotics car. The car must be equipped to:
 - Use dc motors as the drive system
 - Have sufficient room on a breadboard for a LCD (Liquid Crystal Display), PIC microcontroller(s), H-bridge, and other supporting electronics
 - Mount several different sensors that will be studied this year

• Practice Circuit:


• Perform Review 1 Lab 3 – Touch Switch.

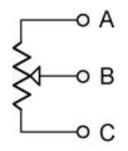
Cornerstone Electronics Technology and Robotics II Week 1 Electronics Review 1 Lab 1 – Voltage Drop in a Parallel Circuit

- **Purpose:** The purpose of this lab is to experimentally verify that the voltage drops across parallel resistors are equal.
- Apparatus and Materials:
 - o 1 Solderless Breadboard with 9 V Power Supply
 - o 1 Digital Multimeter
 - 1 1 K Ohm Resistor
 - o 2-2.2 K Ohm Resistors
 - 1 4.7 K Ohm Resistor

• Procedure:

- Wire the following circuit
- $\circ~$ Measure and record V_AE, V_BF, V_CG, and V_DH.

• Results:


Points	Voltage Drop
A - E	
B - F	
C - G	
D - H	

• Conclusions:

 $\circ~$ How do the voltage drops $V_{AE},~V_{BF},~V_{CG},$ and V_{DH} mathematically relate to each other?

Cornerstone Electronics Technology and Robotics II Week 1 Electronics Review 1 Lab 2 – Potentiometers

- **Purpose:** The purpose of this lab is have the student measure tripot values and to help the student understand the function of a potentiometer as a variable resistor.
- Apparatus and Materials:
 - 1 Digital Multimeter
 - \circ 1 5 K Ohm Potentiometer
- Procedure:
 - Testing potentiometers:
 - Test and record the maximum resistance of the potentiometer with a DMM, and compare with value printed on the side of the potentiometer.
 - Turn the potentiometer shaft and then flip the DMM leads. How does the maximum resistance value of the potentiometer react? Record your results.
 - Using the DMM, measure and record the resistance R_{AB} , R_{BC} , and R_{AC} at three different positions of the potentiometer. Before changing each position, apply +5v to Point A and ground to Point C, then measure and record V_{AB} , V_{BC} , and V_{AC} .

- Results:
 - o Maximum resistance of the potentiometer:

Maximum resistance = _____ohms

Printed value of the potentiometer = _____ ohms

Resistance when potentiometer shaft turned = _____ohms

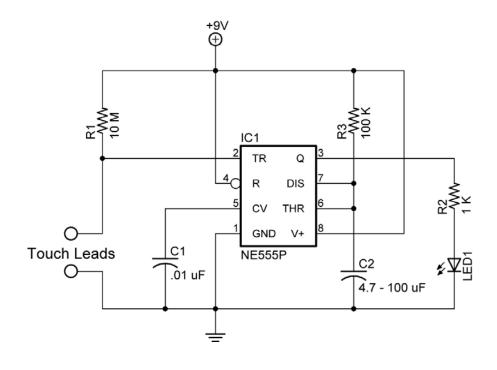
Resistance when DMM leads reversed = _____ohms

• Testing potentiometers:

Potentiometer Test 1					
	Position 1 (Ohms)		Position 1 (Volts)		
R _{AB}		V _{AB}			
R _{BC}		V _{BC}			
$R_{AB} + R_{BC}$		V_{AB} + V_{BC}			
R _{AC}		V _{AC}			

Potentiometer Test 2					
	Position 2 (Ohms)		Position 2 (Volts)		
R _{AB}		V _{AB}			
R _{BC}		V_{BC}			
$R_{AB} + R_{BC}$		V_{AB} + V_{BC}			
R _{AC}		V _{AC}			

Potentiometer Test 3					
	Position 3 (Ohms)		Position 3 (Volts)		
R _{AB}		V_{AB}			
R _{BC}		V_{BC}			
$R_{AB} + R_{BC}$		$V_{AB} + V_{BC}$			
R _{AC}		V _{AC}			


• Conclusions:

 $\circ~$ In the potentiometer test, mathematically relate R_{AC} to R_{AB} and $R_{BC}.$

 $\circ~$ How does V_{AC} relate to V_{AB} + $V_{BC}?$

Cornerstone Electronics Technology and Robotics II Week 1 Electronics Review 1 Lab 3 – Touch Switch

- **Purpose:** The purpose of this lab is to reacquaint the student with wiring a circuit on a breadboard.
- Apparatus and Materials:
 - o 1 555 Timer
 - \circ 1 10M Ω Resistor
 - \circ 1 100K Ω Resistor
 - \circ 1 1K Ω Resistor
 - \circ 1 0.01 uF Capacitor
 - o 1-4.7uF, 10uF, 22uF, 47uF, and 100uF Capacitors
 - 1 LED
- Procedure:
 - Wire the touch switch circuit on your breadboard.
 - Use a 4.7 uF capacitor for C2 to begin, and then substitute the 10 uF, 22 uF, 47 uF, and 100 uF in its place.
 - Use the normal jumpers as your touch leads.

