
Cornerstone Electronics Technology and Robotics Week 8 Chapter 3, Introduction to Basic Electrical Circuit Materials Continued

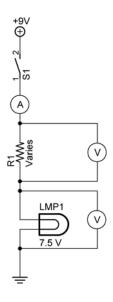
- Administration:
 - o Prayer
 - o Turn in quiz
- Review LED's:
 - o Wire the following circuits on your breadboards:

Note in the table below which LED or LED's light in each circuit

Circuit	LED 1	LED 2
Α	on or off	on or off
В	on or off	on or off
С	on or off	on or off

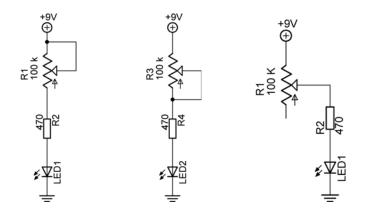
Now substitute a tri-colored LED for the LED's in the above circuits.

- Electricity and Electronics, **Section 3.5**, Resistors:
 - o Types:
 - Fixed:
 - Symbols:



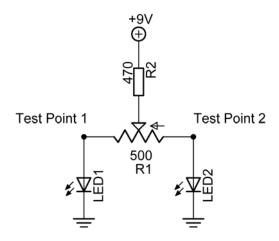
- Carbon composite resistor
- Thin film resistor
- Film resistors
- Chip resistors
 - o SIP Single In-line Package
 - o DIP Dual In-line Package
- Wire wound resistors are used where the resistor has to dissipate a lot of heat.
- Adjustable resistor:
 - Symbol:

- General Function of Resistors:
 - Resistors resist the flow of electrons through an electrical circuit. They convert electrical energy into mechanical energy (heat).
 - Students assemble the circuit below on their breadboard using 1, 10, 22, 47, 68, and 100 ohm resistors, an ammeter, two voltmeters, and a 7.5 v light bulb. Note the brightness variation, the currents, and voltage drops in each case.

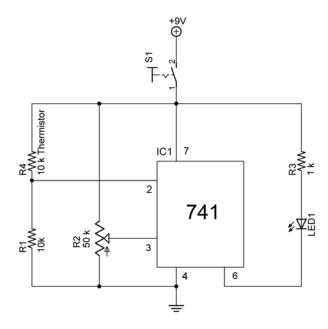

Circuit D

	Voltage Drops for Circuit D					
Circuit	R1 Value	Current	Voltage R1	VoltageLMP1	Voltage Total	
1						
2						
3						
4						
5						
6						

- Resistors are used to:
 - Provide a voltage drop
 - Provide a current limit
 - Dissipate (converting) electrical energy
 - Some electrical components have resistance that varies with temperature or light. They serve as sensors used in various applications.
- A larger value in ohms represents a larger resistance.
- Resistor Failure:
 - Open circuit
 - Changed in value
 - They never go short circuit.
- Physical characteristics:
 - Different resistance values are created by mixing or doping different impurities with the carbon.
 - Electrical current running through a resistor causes it to become heated. Resistors have a wattage rating. The higher this rating the more heat they can dissipate. The wattage in a resistor is the <u>maximum</u> amount of heat energy it can safely dissipate without damage.
 - Demonstration using a 150 ohm ½ watt and ¼ watt resistors with various currents from a robust power supply. Note how the heat from the resistors varies. Verify the value of the resistor as the voltage increases.
 - Resistors carrying large currents must be physically large so the heat can radiate quickly to the surrounding air.
 - Demonstration using a small (1/4 watt) and a larger (10 watt) resistor, both having a resistance of 10 ohms. The current through each resistor will be the same. Note the variation in heat given off by the two resistors.
- Potentiometers: A potentiometer is a type of variable (adjustable) resistor that is used in circuits having low power. They are used to divide voltage and they come with three terminals.
 - Symbol:


- Values printed on a potentiometer are the maximum value.
- Designed to turn tens of thousands of times.
- Samples

- **Tripots** (trimmer potentiometers or trimmers):
 - Small potentiometers without knobs.
 - Wear out after as little as one hundred turns.
 - Demonstrate single vs. multi-turn tripots
 - Values
 - The third digit is the number of zeros to add to the end of the first two digits. For example, a tripot labeled 221 has a value of 220 ohms; a tripot labeled 123 has a value of 12,000 ohms.
 - o Tripot sample values:
 - 1.
 - **2**.
 - **3**.
 - **4**.
 - **5**.
 - **6**.
 - **7**.
- Testing potentiometers:
 - Test for maximum resistance with an ohm meter, (the outside leads) and compare with value printer on the side of the potentiometer.
 - Turn tripot dial and also switch leads
 - Using two DMM's, connect the test wiper (center) lead to the two outside leads and observe the resistances of each meter as you change the value of the potentiometer.
- o SEE pg 9, 10, Marine Institute Electrotechnology 1100
- Variable brightness LED circuit:
 - Wire each circuit below and compare the results.


What is the purpose of the 470 ohm resistor?

Brightness balancing circuit:

Note: The test points will be used in future lessons.

- o Thermistor:
 - Resistor that are designed to change in value when heated
 - They are used in temperature measuring circuits.
 - Students graph temperature vs. resistance for 10 k and 1 k thermistors.
 - Thermistor Circuit:

Temperature Switch

Switch pins 2 and 3 so the LED will light as the temperature decreases.

o Resistor Color Code:

Color Value Bands for Resistors and						
Capacitors						
Color	First Band	Second Band	Third Band			
Silver	-	-	x1/100			
Gold	-	-	x1/10			
Black	0	0	x1			
Brown	1	1	x10			
Red	2	2	x100			
Orange	3	3	x1,000			
Yellow	4	4	x10,000			
Green	5	5	x100,000			
Blue	6	6	x1,000,000			
Violet	7	7	-			
Gray	8	8	_			
White	9	9	-			

Resistor Tolerance Bands		
Color	Tolerance	
None	20%	
Silver	10%	
Gold	5%	
Red	2%	
Brown	1%	

- o Tolerance Calculations:
 - 470 Ω resistor with a 10% tolerance:
 - The range of resistance is from 470 ohms minus 47 ohms (-10%) to 470 ohms plus 47 ohms (+10%). Therefore the range is from 423 to 517 ohms.
- Suggested homework, Student Activity Sheets 3-2, 3-3.